# Problems and Pythagoras numbers

### Calculate the divisions below with your mind and mark the fair ones with an ** x** :

1. 48/2

2. 48/3

3. 48/4

4. 48/5

5. 48/6

6. 48/7

7. 48/8

8. 48/9

1. 45/2

2. 45/3

3. 45/4

4. 45/5

5. 45/6

6. 45/7

7. 45/8

8. 45/9

### Now write below all the divisors of:

· 48: …………………………………………………………………

· 45: …………………………………………………………………

### Problem:

I have a collection of 225 stamps and I want to place them in an album. Every page of it has space for 30 stamps maximum. How many stamps can I place in each page so I can use the fewer of them and have the same number of stamps in each one?

**Solution**:

### Circle the numbers that are divided with 2, 4 and 9 at the same time:

100 302 815 150 925 300

3600 8136 8082 1306 5127 9246

### Write down each one of the numbers below as a product of **two** factors:

· 10:

· 35:

· 48:

· 54:

· 63:

· 72:

· 81:

· 93:

### Calculate with your mind and write down each one of the numbers below as a product of prime factors:

· 10:

· 30:

· 50:

· 70:

· 20:

· 40:

· 60:

· 80:

### Circle the correct one:

(LCM: Least / Lowest Common Multiple)

· LCM(4, 9): a. 9 b.18 c. 27 d.36 e.72

· LCM(10, 15): a. 15 b. 20 c. 30 d. 60 e. 150

· LCM(7, 35): a. 35 b. 70 c. 105 d. 245 e. 700

### Problem:

Three friends went to the park with their bikes. They started together the cycling of the trail. It took the first one 4 minutes to finish one round, the second one 6 minutes and the third one 8 minutes. In how many minutes will they pass together from the same spot and how many rounds will each one have made?

**Solution**:

### Problem:

Katherine practices the trumpet every 11^{th} day and the flute every 3^{rd} day.

Katherine practiced both the trumpet and the flute today.

How many days is it until Katherine practices the trumpet and flute again on the same day?

**Solution:**

### Problem:

Paul goes golfing every 6^{th} day and Nikos goes golfing every 7^{th} day.

If Paul and Nikos both went golfing today, how many days is it until they go golfing on the same day again?

**Solution:**

### Problem:

Anastasia and George ended up making the same number of biscuits for a bake sale at school, even though Anastasia made them in batches of 7 biscuits and George made them in batches of 11 biscuits. What is the smallest number of biscuits each one must have baked?

**Solution:**

### Problem:

Marina baked 30 oatmeal cookies and 48 chocolate chip cookies to package in plastic containers for her friends at school. She wants to divide the cookies into identical containers so that each container has the same number of each kind of cookie. If she wants each container to have the greatest number of cookies possible, how many plastic containers does she need?

**Solution:**

### Suppose we have a rectangular triangle ABC where AB=5, BC=12 and AC is the hypotenuse. Find the AC side.

**Solution:**

### Suppose we have a triangle ABC where ΑΒ=5 cm, BC=3 cm and B=90°. How many cm is the AC side?

**Solution:**

### Prove that each point of the perpendicular bisector of a line segment is equidistant from the ends.

**Solution:**

### In the figure below prove that AB is Line bisector of KL when the two circles are equal.

** Solution:**

### If the red lines represent the distances between Denmark, Greece, Spain and France, where do we have to meet in the summer to be in an equidistant place?

** Solution:**